Vamos provar essa bela identidade utilizando apenas argumentos combinatórios.
Quantos subconjuntos com m mulheres e h homens temos em um grupo de p pessoas? Podemos pensar de duas formas diferentes: somando cada subconjunto possível ou simplesmente escolhendo p pessoas das m+h totais.
De fato, o número de subgrupos nos quais há exatamente k mulheres é:
. Logo:
É evidente que poderíamos fazer uma demonstração simples aplicando o Princípio da Indução Finita ou a seguinte identidade:
O termo genérico do desenvolvimento de
é
, o que implica em o coeficiente em
ser
. Por outro lado:
O coeficiente de
no produto
é:
Logo:
Corolário (Fórmula de Lagrange) ![(C^{0}_{n})^2+(C^{1}_{n})^2+...+(C^{n}_{n})^2=C^{n}_{2n} [;(C^{0}_{n})^2+(C^{1}_{n})^2+...+(C^{n}_{n})^2=C^{n}_{2n};]](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_vuv3nu5aA9Dc0G35TspeLnceyIylD875fT8OAtY27AGTkwIgPdCvkH82b5gwbUtREnsjDjX9f3FmPw4yexh7Dn9-u7ZdZA_R4QCWjEFbUg04IyAax7HwMzpWT-7NrfhLm3uu6VCIIxcIpLI4AK0sMhPE8jkyuH-Lo7CAu7naeO7sEZ5lZ25a-6Fpu2x_H28b2AINOaPsOLBZDHb7wXdc-zNPG7Em0RyW9-Bw=s0-d)
Demonstração: Basta aplicar m=h=p=n na fórmula de Euler:
Mas
. Logo:
![\sum^{n}_{k=0}(C^{k}_{n})^2=C^{n}_{2n} [;\sum^{n}_{k=0}(C^{k}_{n})^2=C^{n}_{2n};]](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_u2qZAcIDrUt7Ookr6hm3Di2NziVdufOMjinBfMLkcmj6jgTcsqXnHJ9o_SP6o5oY0BvJTd_b9prkW7ZCWYrUe7shmwf0XDbaBfgfCcGo8KNQrlfZ3iKRRFY9Ke5WqQRZf8dw3ufVIanx5lfKPtqMGCz9ACWfRFajDfNL694r7ocLt11A=s0-d)
Referência bibliográfica:
MORGADO, A.C. Análise Combinatória e Probabilidade. 9a ed. Rio de Janeiro: SBM
MORGADO, A.C. Análise Combinatória e Probabilidade. 9a ed. Rio de Janeiro: SBM
Olá pesoal do blog!
ResponderExcluirTentei visualizar os códigos em dois navegadores distintos: chrome e mozilla porém sem sucesso, sendo que no último uso o greasemonkey, não sei o que fazer, alguém pode me ajudar?!